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Congruences and Congruence Equations 

A great many problems in number theory rely only on remainders when dividing by an integer. Recall 

the division algorithm: given a ∈ Z and n ∈ N there exist unique q, r ∈ Z such that 

a = qn + r, 0 ≤ r < n (∗) 

It is to the remainder r that we now turn our attention. 

 

3.1 Congruences and Zn 
 

The division algorithm says that every integer a ∈ Z has a unique residue r ∈ Zn. 

Example 3.2. We may write 7 ≡ −3 (mod 5), since applying the division algorithm yields 

7 = 5 × 1 + 2 and − 3 = 5 × (−1) + 2 

Indeed both 7 and 12 have residue 2 modulo 5. 

As another example, we prove a very simple result. 

 

Definition 3.1. For each n ∈ N, the set Zn = {0, 1, . . . , n − 1} comprises the residues modulo n. 

Integers a, b are said to be congruent modulo n if they have the same residue: we write a ≡ b (mod n). 

Lemma 3.3. All squares of integers have remainders 0 or 1 upon dividing by 3. 



2  

 

Proof. Suppose that a = q1n + r1 and b = q2n + r2 are the results of applying the division algorithm 
to a, b modulo n. Plainly a ≡ b (mod n) ⇐⇒ r1 = r2. We prove each direction separately: 

(⇒) This is almost immediate: 

r1 = r2 =⇒ a − nq1 = b − nq2 =⇒ a − b = n(q2 − q1) 

Since q2 − q1 is an integer, a − b is a multiple of n. 

(⇐) Conversely, suppose that a − b =kn is a multiple of n. Then 

r1 − r2 = (a − nq1) − (b − nq2) = (a − b) + n (q2 − q1) = n(k + q2 − q2) 

This says that r1 − r2 is an integer multiple of n. Recalling the proof of the division algorithm, 

−n < r1 − r2 < n forces r1 − r2 = 0. 

The Theorem says that we can compare remainders without computing quotients. In case the advantage 
isn’t clear, we recall our earlier example. 

Example (3.2 revisited). 7 ≡ −3 (mod 5) follows since 7 − (−3) = 10 is divisible by 5. There is 

no need for us to express 7 and −3 using the division algorithm. 

Our next goal is to define an arithmetic with remainders, again without calculating quotients. 

Example 3.5. If x ≡ 3 and y ≡ 5 (mod 7), then there exist integers k, l such that x = 7k + 3 and 

y = 7l + 5. But then 

xy = 7(7kl + 5k + 3l) + 15 = 7(7kl + 5k + 3l + 2) + 1 =⇒ xy ≡ 1 (mod 7) 

It would be so much simpler if we could write 

x ≡ 3, y ≡ 5 =⇒ xy ≡ 3 · 5 ≡ 15 ≡ 1 (mod 7) 

Thankfully the next result justifies the crucial step. 

 

Proof. We just prove 2: part 1 is similar, and part 3 is by induction using part 2 as the induction step. 

By Theorem 3.4, there exist integers k, l such that x = kn + a and y = ln + b. But then 

xy = (kn + a)(ln + b) = n(kln + al + bk) + ab =⇒ xy ≡ ab (mod n) 

Theorem 3.4. a ≡ b (mod n) ⇐⇒ n | (a − b) 

Theorem 3.6 (Modular Arithmetic). Suppose that x ≡ a and y ≡ b (mod n). Then 

x ± y ≡ a ± b (mod n) 
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Examples 3.7. We can now easily compute remainders of complex arithmetic objects. 

1. What is the remainder when 17113 is divided by 3? 

Don’t bother asking your calculator: 17113 is 139 digits long! Instead we use modular arithmetic: 

17 ≡ −1 (mod 3) =⇒ 17113 ≡ (−1)113 (Theorem 3.6, part 3.) 

≡ −1 (mod 3) (since 113 is odd) 

Since −1 ≡ 2, we conclude that 17113 has remainder 2 when divided by 3. 

2. Similarly, calculating remainders modulo 10 yields 

21945 − 4312 ≡ (−1)45 − 312 ≡ −1 − 96 ≡ −1 − (−1)6 ≡ −1 − 1 ≡ −2 ≡ 8 (mod 10) 

3. We find the remainder when 449 is divided by 67. Even with the assistance of a powerful 
calculator, evaluating 

449 = 316, 912, 650, 057, 057, 350, 374, 175, 801, 344 

doesn’t help us! Instead we first search for a power of 4 which is small modulo 67: the obvious 

choice is 43 = 64. 

449 ≡ 4 · (43)16 ≡ 4 · (−3)16 ≡ 4 · 316 (mod 67) 

Next we search for a power of 3 which is small: since 34 = 81 ≡ 14 (mod 67) we obtain 

449 ≡ 4 · (34)4 ≡ 4 · 144 (mod 67) 

Now observe that 142 = 196 ≡ −5 (mod 67) and we are almost finished: 

449 ≡ 4 · (−5)2 ≡ 4 · 25 ≡ 100 ≡ 33 (mod 67) 

Now that we have some better notation, here is a much faster proof of Lemma 3.3. 

Proof. Modulo 3 we have: 

02 ≡ 0, 12 ≡ 1, 22 ≡ 4 ≡ 1 

Hence squares can only have remainders 0 or 1 modulo 3. 
 

As an application, we can easily show that in a primitive Pythagorean triple (a, b, c) exactly one of a 
or b is a multiple of three. Just think about the remainders modulo 3: 

a2 + b2 ≡ c2 (mod 3) 

The only possibilities are 0 + 0 ≡ 0, 0 + 1 ≡ 1 and 1 + 0 ≡ 1, however the first says that all three of 

a, b, c are divisible by three which results in a non-primitive triple. 

Similar games can be played with other primes. 
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ka ≡ kb =⇒ n | (ka − kb) =⇒ 
n k 

(a − b) =⇒ 
n  

(a − b) 

Congruence and Division By Theorem 3.6, we may add, subtract, multiply and take positive inte- 

ger powers of remainders without issue. Division is another matter entirely: it simply does not work 
in the usual sense. 

Example 3.8.  Since 54 − 30 = 24 is divisible by 8, we see that 54 ≡ 30 (mod 8). We’d like to divide 
both sides this congruence by 6, however 

6 × 9 ≡ 6 × 5 (mod 8) ≠ ⇒ 9 ≡ 5 (mod 8) 

since the right hand side is false. What can we try instead? Instead we follow the definition: 

6 × 9 ≡ 6 × 5 (mod 8) =⇒ 6 × 9 = 6 × 5 + 8m for some1m ∈ Z 

We can’t automatically divide this by 6, but we can certainly divide through by 2: 

3 × 9 = 3 × 5 + 4m =⇒ 3 | 4m =⇒ 3 | m =⇒ m = 3l for some l ∈ Z 

We may now divide by 3 to correctly conclude 

9 = 5 + 4l =⇒ 9 ≡ 5 (mod 4) 

It appears that we were able to divide our original congruence by 6, but at the cost of dividing the 

modulus by 2: it just so happens that 2 = gcd(6, 8). . . 
 

Proof. gcd(k, n) = d =⇒ gcd
  

k , n

  
= 1 so that n and k are coprime integers. Appealing to a 

corollary2of Bézout’s identity, we see that 
 
 

d d d 

Otherwise said a ≡ b (mod n ). 

 

Examples 3.10. 1. We divide by 4 in the congruence 12 ≡ 28 (mod 8). Since gcd(4, 8) = 4 we also 
divide the modulus by 4 to obtain 

12 ≡ 28 (mod 8) =⇒ 3 ≡ 7 (mod 2) 

2. We divide by 12 in the congruence 12 ≡ 72 (mod 30). Since gcd(12, 30) = 6, we conclude that 

12 ≡ 72 (mod 30) =⇒ 1 ≡ 6 (mod 5) 
. 

Theorem 3.9. If k = 0 and gcd(k, n) = d, then 

   d 
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Division in the ring Zn The development of modular arithmetic (Theorem 3.6) shows that the set 

of residues Zn = {0, 1, . . . , n − 1} modulo n has the algebraic structure of a ring.3 The interesting 
question for us is when one can divide. 

Recall in the real numbers that to divide by x means that we multiply by some element x−1 satisfying 

xx−1 = 1: plainly this is possible provided x ̸= 0. The same idea holds in Zn. 

Example 3.12. By considering the multiplication tables for Z5 and Z6, we can easily identify the 
units and their inverses: 

 
Z5 0  1  2  3  4  Z6 0  1  2  3  4  5 
0 0  0  0  0  0  0 0  0  0  0  0  0 
1 0  1  2  3  4  1 0  1  2  3  4  5 
2 0  2  4  1  3  2 0  2  4  0  2  4 
3 0  3  1  4  2  3 0  3  0  3  0  3 
4 0  4  3  2  1  4 0  4  2  0  4  2 

   5 0  5  4  3  2  1 

There are plainly only two units in Z6, namely 1 and 5. Moreover, each is its own inverse 

1 · 1 ≡ 1, 5 · 5 ≡ 1 (mod 6) 

Modulo 5, however, every non-zero residue is a unit: 

1 · 1 ≡ 1, 2 · 3 ≡ 3 · 2 ≡ 1, 4 · 4 ≡ 1 (mod 5) 

In the example, the units have a simple property in common. 
 

Proof. (⇒) If xy ≡ 1 (mod n), then xy − λn = 1 for some λ ∈ Z. Plainly any common factor of x 

and n divides 1, whence gcd(x, n) = 1. 

(⇐) By Bézout’s identity, ∃λ, y ∈ Z such that 

xy + nλ = 1 =⇒ xy ≡ 1 (mod n) 

Plainly every non-zero x is a unit if and only if gcd(x, n) = 1 for all x ∈ {1, . . . , n − 1}. This is if and 
only if n has no divisors except itself and 1: i.e. n is prime. 

 

This result gels with Theorem 3.9: we can divide a congruence by k while remaining in Zn precisely 

when d = gcd(k, n) = 1. Moreover, the proof tells us how to compute inverses: 
. 

Definition 3.11. Let x ∈ Zn. We say that y ∈ Zn is the inverse of x if xy ≡ yx ≡ 1 (mod n). 
An element x is a unit if it has an inverse. A ring is a field if every non-zero element is a unit. 

Theorem 3.13. x ∈ Zn is a unit ⇐⇒ gcd(x, n) = 1. 
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Example 3.14. Find the inverse of 15 ∈ Z26. 

First observe that gcd(15, 26) = 1, so an inverse exists. Now apply the Euclidean algorithm and 
Bézout’s identity: 

 

26 = 1 · 15 + 11 
15 = 1 · 11 + 4 
11 = 2 · 4 + 3 

4 = 1 · 3 + 1 

=⇒ gcd(26, 15) = 1 = 4 − 3 = 4 − (11 − 2 · 4) 

= 3 · 4 − 11 = 3(15 − 11) − 11 
= 3 · 15 − 4 · 11 = 3 · 15 − 4(26 − 15) 

= 7 · 15 − 4 · 26 

from which we see that 15 · 7 ≡ 1 (mod 26): the inverse of 15 is therefore 7. 

Exercises 3.1 1. Find the residues (remainders) of the following expressions: 

(a) 64 − 38 · 48 (mod 5) 

(b) 11732 + 11831 (mod 7) 

(c) 35101340 − 27094444 (mod 24) 

2. Suppose that d | m. Show that if a ≡ b (mod m ), then 

a ≡ b, or b + 
m 

, or · · · , or b + (d − 1) 
m 

(mod m) 

d d 

3. Show that a positive integer is divisible by 3 if and only if the sum of its digits is divisible by 3. 

(Hint: for example 471 = 4 · 100 + 7 · 10 + 1 . . .) 

4. Suppose z ∈ N and that z ≡ 3 (mod 4). Prove that at least one of the primes p dividing z must 
be congruent to 3 modulo 4. 

5. (a) State the units in the ring Z48. 

(b) Find the inverse of 11 modulo 48. 

(c) If 11x ≡ 2 (mod 48) for some x ∈ Z48, find x. 

6. Prove that inverses are unique: if y, z are inverses of x ∈ Zn, then y ≡ z (mod n). 

7. A non-zero element x ∈ Zn is a zero divisor if ∃y ∈ Zn such that xy ≡ 0 (mod n). Prove that 

Zn has zero divisors if and only if n is composite. 

8. Suppose p is prime and a ≡ ̸ 0. Prove that the remainders 0, a, 2a, 3a, . . . , (p − 1)a are distinct 
modulo p, and thus constitute all of Zp. 

9. Suppose r and s are odd. Prove the following: 

(a) 
rs − 1 

≡ 
r − 1 

+ 
s − 1 

(mod 2) 
2 2 2 

(b) r2 ≡ s2 ≡ 1 (mod 8) 

(c) 
(rs)2 − 1

 8 
r2 − 1 

8 
+ 

s2 − 1 

8 
(mod 8) 

10. Prove that (kk ) is periodic modulo 3 and find its period. 

(Hint: First try to spot a pattern. . . ) 

≡ 
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3.2 Congruence Equations and Lagrange’s Theorem 

In this section we consider polynomial congruence equations p(x) ≡ 0 (mod m). The simplest type 
are linear: in fact we know how to solve these already. 

∃x ∈ Z s.t. ax ≡ c (mod m) ⇐⇒ ∃x, y ∈ Z s.t. ax + my = c 

This last is a linear Diophantine equation; we need only rephrase our work from earlier. 
 

Examples 3.16. 1. We solve the congruence equation 15x = 4 (mod 133). 

By the Euclidean algorithm/Bézout, we see that 
 

133 = 8 · 15 + 13 
15 = 1 · 13 + 2 

13 = 6 · 2 + 1 

=⇒ d = gcd(15, 133) = 1 = 13 − 6 · 2 = 13 − 6(15 − 13) 

= 7 · 13 − 6 · 15 
= 7(133 − 8 · 15) − 6 · 15 

= 7 · 133 − 62 · 15 

Since d = 1 and d | 4, there is exactly one solution. Moreover, modulo 133, we see that 

15 · (−62) ≡ 1 =⇒ 15 · (−248) ≡ 15 · 18 ≡ 4 (mod 133) 

whence x0 = 18 is the unique solution.a 

2. We solve the linear congruence 1288x ≡ 21 (mod 1575). 

Assume we have applied the Euclidean algorithm and Bézout’s identity to obtain 

d = gcd(1575, 1288) = 7 = 1575 · 9 − 1288 · 11 

Since 7 | 21, there are precisely seven solutions. Indeed 

7 ≡ 1288(−11) (mod 1575) =⇒ x = −33 ≡ 1542 (mod 1575) 

Moreover, m = 1575 = 225, whence all solutions are 
d 7 

{x ≡ −33 + 225k : k = 0, . . . , 6} = {192, 417, 642, 867, 1092, 1317, 1542} 

Theorem 3.15. 
 

 

d 

 

x = x0 + k
m 

: k ∈ Z 

 

d d d 
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Higher degree congruences : While we were able to give a complete description of the solutions to 

a linear congruence, for higher order polynomials, things quickly become very messy. We start with 
a simple example of a quadratic congruence which can easily be solved by inspection. 

Example 3.17. Consider the quadratic equation x2 + 3x ≡ 0 (mod 10). One can easily check by 
plugging in the remainders 0, . . . , 9 that the solutions to this equation are 

x ≡ 0, 2, 5, 7 (mod 10) 

This is perhaps surprising, since we are used to quadratic equations having at most two solutions. 

Now consider the same equation modulo the prime divisors of 10. Since 10 | d ⇐⇒ 2 | d and 5 | d, we 
see that 

 

x2 + 3x ≡ 0 

 

(mod 10 

 

) ⇐⇒ 
x2 + 3x ≡ 0 (mod 2) 

x2 + 3x ≡ 0 (mod 5) 

By substituting values for x, we easily check that sanity is restored: each congruence now has two 
solutions! 

x2 + 3x ≡ 0 (mod 2) ⇐⇒ x ≡ 0, 1 (mod 2) 

x2 + 3x ≡ 0 (mod 5) ⇐⇒ x ≡ 0, 2 (mod 5) 

We can even factorize in the familiar manner: 

x2 + 3x ≡ x2 − x ≡ x (x − 1) (mod 2) 

x2 + 3x ≡ x2 − 2x ≡ x (x − 2) (mod 5) 

Modulo 10, however, we have two distinct factorizations: 

x2 + 3x ≡ x (x − 7) ≡ (x − 2) (x − 5) (mod 10) 

For general polynomial congruences, the same sort of thing is true. The number of solutions and 
types of factorizations are more predictable when the modulus is prime. 

 

Lagrange’s Theorem is useless for congruences such as x39 + 25x2 + 1 ≡ 0 (mod 17): since there are 
only 17 distinct values of x to try, the congruence has a maximum of 17 solutions, not 39. 

Before proving Lagrange’s Theorem, we need one additional ingredient. 
 

 

( 

Theorem 3.18 (Lagrange). 

 
 

Lemma 3.19 (Factor Theorem in Z[x]). 
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Proof of Lagrange. Suppose f (x) = anxn + · · · is a polynomial with integer coefficients and degree n 
modulo p: that is, p ∤ an. Moreover, assume that f (c1) ≡ 0 (mod p). By the factor theorem, there 
exists a unique polynomial q1(x) with integer coefficients, such that 

f (x) = (x − c1) q1(x) + f (c1) ≡ (x − c1) q1(x) (mod p) 

Plainly q1(x) = anxn−1 + · · · has degree n − 1 modulo p. If c2 ≢ c1 is another root modulo p, then 

0 ≡ f (c2) ≡ (c2 − c1)q1(c2) =⇒ q1(c2) ≡ 0 (mod p) 

The last step is where we need p to be prime.4We may therefore factor out (x − c2) from q1(x) modulo 

p, and thus from f (x). Repeating the process, if there are n distinct roots, then f (x) factorizes as 

f (x) ≡ (x − c1) · · · (x − cn)qn(x) (mod p) 

where qn(x) has degree n − n = 0: it is necessarily the constant an. Finally, if ξ ≡ ̸ci for any i, then 

f (ξ) ≡ an (ξ − c1) · · · (ξ − cn) ≢ 0 (mod p) 

since there are no zero divisors in Zp. We conclude that f (x) ≡ 0 has no further roots modulo p. 

In fact the ring of polynomials with coefficients in Zp has a Euclidean algorithm which can be used 

to prove a unique factorization theorem: there is only one way to factorize a polynomial modulo p. 
We won’t prove it, but you are welcome to use the fact nonetheless
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