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Congruences and Congruence Equations

A great many problems in number theory rely only on remainders when dividing by an integer. Recall
the division algorithm: given 2 € Z and n € N there exist unique g,7 € Z such that

a=gqn+r, 0<r<mn (*)

It is to the remainder r that we now turn our attention.

3.1 Congruences and Z»

Definition 3.1. For each n € N, the set Z, = {0,1,...,n — 1} comprises the residues modulo n.

Integers a, b are said to be congruent modulo n if they have the residue: we writea = b (mod n).

The division algorithm says that every integer 2 € Z has a unique residue r € Zn.
Example 3.2. We may write 7 = —3 (mod 5), since applying the division algorithm yields
7=5X1+2and -3=5X(-1)+2

Indeed both 7 and 12 have residue 2 modulo 5.

As another example, we prove a very simple result.

(Lemma 3.3.  All squares of integers have remainders 0 or 1 upon dividing by 3. ]




[Theorem 34. a=b (modn) <= n|(@a—">b) ]

Proof. Suppose that a = qin + r1 and b = gan + r; are the results of applying the division algorithm
to 4,b modulo n. Plainly 2 = b (mod n) <= r1 = r,. We prove each direction separately:

(=) This is almost immediate:
ri=r2==>a—-nqg1=b—ng == a—b=n(g:— q1

Since g2 — g1 is an integer, a — b is a multiple of .

(<) Conversely, suppose that a — b =kn is a multiple of n. Then
ri—r2=(@—nq)—b-—ng2) =@—0b) +n(q—q) =nlk+ g2 — q2)

This says that r1 — r; is an integer multiple of n. Recalling the proof of the division algorithm,

—n<ri—r, <nforcesri —ry = 0. -

The Theorem says that we can compare remainders without computing quotients. In case the advantage
isn’t clear, we recall our earlier example.

Example (3.2 revisited). = —3 (mod 5) follows since 7 — (—3) = 10 is divisible by 5. There is
no need for us to express 7 and —3 using the division algorithm.

Our next goal is to define an arithmetic with remainders, again without calculating quotients.

Example 3.5. Ifx = 3andy = 5 (mod 7), then there exist integers k,I such that x = 7k + 3 and
y = 71 + 5. But then

xy =77kl + 5k +31) + 15 = 7(7kl + 5k + 31 +2)+1 == xy=1 (mod 7)
It would be so much simpler if we could write
x=3,y=5==>xy=3:-5=15=1 (mod?7)

Thankfully the next result justifies the crucial step.
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Theorem 3.6 (Modular Arithmetic). Suppose that x = aand y = b (mod n). Then
1. xxy=a=b (mod n)
2. xy = ab (mod n)

3. Foranym € N, x™ = a" (mod n)

Proof. We just prove 2: part 1 is similar, and part 3 is by induction using part 2 as the induction step.
By Theorem 3.4, there exist integers k, [ such that x = kn + a and y = In + b. But then

xy = (kn + a)(In + b) = n(kln + al + bk) + ab == xy = ab (mod n)




Examples 3.7.

We can now easily compute remainders of complex arithmetic objects.
1. What is the remainder when 1713 is divided by 3?

Don’t bother asking your calculator: 17113 is 139 digits long! Instead we use modular arithmetic:

17=—-1 (mod 3) == 17113 = (—1)113

(Theorem 3.6, part 3.)
= -1 (mod 3)

(since 113 is odd)
Since —1

= 2, we conclude that 173 has remainder 2 when divided by 3.
2. Similarly,

calculating remainders modulo 10 yields
2195 — 4312 = (-1 —-312=-1-96=-1—-(-1)=-1-1=-2=8 (mod 10)

3. We find the remainder when 4%’ is divided by 67. Even with the assistance of a powerful
calculator, evaluating

449 = 316,912, 650, 057,057, 350,374, 175, 801, 344
doesn’t help us! Instead we first search for a power of 4 which is small modulo 67: the obvious
choice is 4% = 64.

49 = 4. ()16 = 4 - (—3)16 =4 - 316 (mod 67)

Next we search for a power of 3 which is small: since 3% = 81 = 14 (mod 67) we obtain

449 = 4 - (344 = 4 - 144 (mod 67)

Now observe that 142 = 196 = —5 (mod 67) and we are almost finished:

44 = 4 - (=5)2 = 4 - 25 = 100 = 33 (mod 67)

Now that we have some better notation, here is a much faster proof of Lemma 3.3.
Proof. Modulo 3 we have:

0z =0, 12 =1, 22=4=1

Hence squares can only have remainders 0 or 1 modulo 3.

[
As an application, we can easily show that in a primitive Pythagorean triple (4, b, ¢) exactly one of a
or b is a multiple of three. Just think about the remainders modulo 3:

az+ b2 =c¢2 (mod 3)

The only possibilitiesare 0 + 0 = 0,0+ 1 = 1and 1 + 0 = 1, however the first says that all three of
a,b, c are divisible by three which results in a non-primitive triple.

Similar games can be played with other primes.




Congruence and Division By Theorem 3.6, we may add, subtract, multiply and take positive inte-
ger powers of remainders without issue. Division is another matter entirely: it simply does not work
in the usual sense.

Example 3.8. Since 54 — 30 = 24 is divisible by 8, we see that 54 = 30 (mod 8). We’d like to divide
both sides this congruence by 6, however

6X9=6x5 (mod8) /== 9=5 (mod 8)

since the right hand side is false. What can we try instead? Instead we follow the definition:
6X9=6xXx5(mod8) == 6X9=6X5+ 8mforsomelm e Z

We can’t automatically divide this by 6, but we can certainly divide through by 2:
3X9=3X5+4m == 3|4m == 3|m == m = 3lforsomel € Z

We may now divide by 3 to correctly conclude
9=5+4] == 9=5 (mod4)

It appears that we were able to divide our original congruence by 6, but at the cost of dividing the
modulus by 2: it just so happens that 2 = gcd(6, 8)...

Theorem 3.9. Ifk = 0 and gcd(k,n) = d, then

ka=kb (modn) == a=b (mod 2)

Proof. gcd(k,n) = d == gcd %2 = 1 so that z;and k,are coprime integers. Appealing to a
corollary?of Bézout’s identity, we see that

ka=kb == n|(ka—kb) == % S(a—b) —= " -

Qll 2

Otherwise said 2 = b (mod 2).

Examples 3.10. 1. We divide by 4 in the congruence 12 = 28 (mod 8). Since gcd(4,8) = 4 we also
divide the modulus by 4 to obtain

12=28 (mod8) == 3=7 (mod 2)
2. We divide by 12 in the congruence 12 = 72 (mod 30). Since gcd(12,30) = 6, we conclude that

12=72 (mod 30) == 1=6 (mod 5)




Division in the ring Z. The development of modular arithmetic (Theorem 3.6) shows that the set

of residues Z, = {0,1,...,n — 1} modulo n has the algebraic structure of a ring.3 The interesting

question for us is when one can divide.

1

Recall in the real numbers that to divide by x means that we multiply by some element x™* satisfying

xx~1 = 1: plainly this is possible provided ' = 0. The same idea holds in Z.

Definition 3.11. Let x € Z.. We say that y € Z. is the inverse of x if xy = yx = 1 (mod n).
An element x is a unit if it has an inverse. A ring is a field if every non-zero element is a unit.

Example 3.12. By considering the multiplication tables for Zs and Ze, we can easily identify the
units and their inverses:

Zs |0 1 2 3 4 Zs |0 1 2 3 45
00 0O0O0OTO 0(00O0O0O0O0OO
1101 2 3 4 110 2 3 45
2102 41 3 2102 40 2 4
3103 14 2 3103 030 3
410 4 3 2 1 410 4 2 0 4 2

5105 43 21

There are plainly only two units in Zs, namely 1 and 5. Moreover, each is its own inverse
1-1=1,5-5=1 (mod®6)
Modulo 5, however, every non-zero residue is a unit:

1-1=1, 2-3=3-2=1, 4-4=1 (mod 5)

In the example, the units have a simple property in common.

Theorem 3.13. x € Z.is a unit <= gcd(x,n) = 1.

Moreover, every non-zero x € Zu is a unit (thus Z. is a field) if and only if n = p is prime.

Proof. (®) Ifxy = 1 (mod n), then xy — An = 1 for some A € Z. Plainly any common factor of x
and n divides 1, whence gcd(x, ) = 1.
(<) ByBézout’sidentity, A,y € Z such that

xy+nk=1 == xy=1 (mod n)

Plainly every non-zero x is a unit if and only if gcd(x,n) = 1 for all x € {1,...,n — 1}. This is if and

only if n has no divisors except itself and 1: i.e. # is prime. .

This result gels with Theorem 3.9: we can divide a congruence by k while remaining in Z» precisely
when d = gcd(k, n) = 1. Moreover, the proof tells us how to compute inverses:




Example 3.14. Find the inverse of 15 € Zs.

First observe that gcd(15,26) = 1, so an inverse exists. Now apply the Euclidean algorithm and
Bézout’s identity:

26=1-15+11 == gcd(26,15) =1=4-3=4—-(11—-2"-4)
15=1-11+4 =3:4-11=3(15-11) - 11
11=2-4+3 =3:15—-4-11=3-15- 4(26 — 15)
4=1-3+1 =7-15-4-26

from which we see that 15 - 7 = 1 (mod 26): the inverse of 15 is therefore 7.

Exercises 3.1 1. Find the residues (remainders) of the following expressions:

10.

(a) 6*—38- 48 (mod 5)
(b) 11732+ 1183! (mod 7)
(c) 3510340 — 2709*4* (mod 24)

. Suppose that d | m. Show thatif a = b (mod %), then
a="b or b+m, or -+, or b+(d—1)m (mod m)
d d

Show that a positive integer is divisible by 3 if and only if the sum of its digits is divisible by 3.
(Hint: forexample 471 = 4 - 100+ 7 - 10+ 1...)

Suppose z € N and that z = 3 (mod 4). Prove that at least one of the primes p dividing z must
be congruent to 3 modulo 4.

(a) State the units in the ring Zss.
(b) Find the inverse of 11 modulo 48.

(c) If 11x = 2 (mod 48) for some x € Zas, find x.

Prove that inverses are unique: if y, z are inverses of x € Z, then y = z (mod n).

A non-zero element x € Zu is a zero divisor if 3y € Zx such that xy = 0 (mod n). Prove that
Z» has zero divisors if and only if n is composite.
Suppose p is prime and a # 0. Prove that the remainders 0,4, 24, 34,. .., (p — 1)a are distinct

modulo p, and thus constitute all of Z,.

Suppose r and s are odd. Prove the following:

-1 -1 -1
(a) = _Er__+s__ (mod 2)

2 2 2
(b) 2 =52 =1 (mod 8)
(rs)2 — 1 -1 -1

(c) 8 = 3 + 3 (mod 8)

Prove that (k*) is periodic modulo 3 and find its period.

(Hint: First try to spot a pattern. . .)




3.2 Congruence Equations and Lagrange’s Theorem

In this section we consider polynomial congruence equations p(x) = 0 (mod m). The simplest type
are linear: in fact we know how to solve these already.

dxeZ st ax=c (modm) <= Ix,y € Z st. ax+my =c¢

This last is a linear Diophantine equation; we need only rephrase our work from earlier.
-

N
Theorem 3.15.  Let d = gcd(a, m). The equation ax = ¢ (mod m) has a solution iff d | c. If xo is a

solution, then all solutions are given by
X = xo+ kmd ke ”Z

Moreover, modulo m, there are exactly d solutions, namely

2 d-1)
Xo, XO+m, Xo + m,...,xo+ s =
d d d
. J
Examples 3.16. 1. We solve the congruence equation 15x = 4 (mod 133).

By the Euclidean algorithm/Bézout, we see that

133 =8-15+13 == d=gcd(15,133) =1=13-6- 2 = 13 — 6(15 — 13)

15=1-13+2 =7-13-6-15
13=6-2+1 =7(133-8-15) - 615
=7-133-62-15

Since d = 1 and d | 4, there is exactly one solution. Moreover, modulo 133, we see that
15-(-62)=1 == 15:(-248) =15 18 = 4 (mod 133)
whence xo = 18 is the unique solution.”

2. We solve the linear congruence 1288x = 21 (mod 1575).

Assume we have applied the Euclidean algorithm and Bézout’s identity to obtain
d = gcd(1575,1288) = 7 = 1575+ 9— 1288 - 11
Since 7| 21, there are precisely seven solutions. Indeed

7 = 1288(—11) (mod 1575) == x = —33 = 1542 (mod 1575)

Moreover, :

m — 1575
d 7

= 225, whence all solutions are

{x=—-33+225k:k=0,...,6} = {192,417,642,867,1092,1317, 1542}




Higher degree congruences : While we were able to give a complete description of the solutions to
a linear congruence, for higher order polynomials, things quickly become very messy. We start with
a simple example of a quadratic congruence which can easily be solved by inspection.

Example 3.17. Consider the quadratic equation x> + 3x = 0 (mod 10). One can easily check by
plugging in the remainders O, ..., 9 that the solutions to this equation are

x=0,257 (mod 10)

This is perhaps surprising, since we are used to quadratic equations having at most two solutions.

Now consider the same equation modulo the prime divisors of 10. Since 10 |d <= 2|dand5|d, we
see that

¥>+3x=0 (mod 2)

x24+3x=0 d 10) <=
(mo ) x>+3x=0 (mod 5)

By substituting values for x, we easily check that sanity is restored: each congruence now has two
solutions!

x2+3x=0 (mod2) «= x=0,1 (mod 2)
2+ 3x=0 (mod5) <= x=0,2 (mod5)

We can even factorize in the familiar manner:

x2+3x=x2—x=x(x—-1) (mod 2)
x2+3x=x2—2x=x(x—2) (mod 5)

Modulo 10, however, we have two distinct factorizations:
x2+3x=xk—-7)=@x-2) (x—5) (mod 10)

For general polynomial congruences, the same sort of thing is true. The number of solutions and
types of factorizations are more predictable when the modulus is prime.

Theorem 3.18 (Lagrange). Let p be prime and f(x) a polynomial with integer coefficients and de-
gree n modulo p. Then f(x) = 0 (mod p) has at most n distinct roots.

Lagrange’s Theorem is useless for congruences such as x3° + 25x% + 1 = 0 (mod 17): since there are
only 17 distinct values of x to try, the congruence has a maximum of 17 solutions, not 39.

Before proving Lagrange’s Theorem, we need one additional ingredient.

r )
Lemma 3.19 (Factor Theorem in Z[x]).  Suppose f(x) is a polynomial with integer coefficients and

that ¢ € Z. Then there exists a unique polynomial q(x), also with integer coefficients, such that

f(x) = (x = )gx) + f(o)

Moreover, f(c) = 0if and only if (x — c) is a factor of f(x). This is also true modulo any n.
\




Proof of Lagrange. Suppose f(x) = ax" + - - - is a polynomial with integer coefficients and degree n
modulo p: that is, p { a.. Moreover, assume that f(c1) = 0 (mod p). By the factor theorem, there
exists a unique polynomial g:1(x) with integer coefficients, such that

f() = (x —c1) g1(x) + flc1) = (x — 1) 1(x) (mod p)
Plainly g1(x) = "1 + - - - has degree n — 1 modulo p. If c; # ¢; is another root modulo p, then

0= f(Cz) = (c2— C1)Q1(C2) == 6]1(C2) =0 (mod p)

The last step is where we need p to be prime.*We may therefore factor out (x — c2) from g1(x) modulo
p, and thus from f(x). Repeating the process, if there are n distinct roots, then f(x) factorizes as

f@=@x=-c)- - (x—c)gulx) (mod p)
where gn(x) has degree n — n = 0: it is necessarily the constant a.. Finally, if § # ci for any i, then
f(a = On (f - Cl) e (f — Cn) _¢/ 0 (mOd p)

since there are no zero divisors in Z,. We conclude that f(x) = 0 has no further roots modulo p.

In fact the ring of polynomials with coefficients in Z, has a Euclidean algorithm which can be used
to prove a unique factorization theorem: there is only one way to factorize a polynomial modulo p.
We won’'t prove it but you are welcome to use the fact nonetheless
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